A note on total colorings of planar graphs without 4-cycles

نویسندگان

  • Ping Wang
  • Jian-Liang Wu
چکیده

Let G be a 2-connected planar graph with maximum degree ∆ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is ∆+1 if (∆, k) ∈ {(7, 4), (6, 5), (5, 7), (4, 14)}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

List Edge and List Total Colorings of Planar Graphs without 6-cycles with Chord

Giving a planar graph G, let χl(G) and χ ′′ l (G) denote the list edge chromatic number and list total chromatic number of G respectively. It is proved that if a planar graph G without 6-cycles with chord, then χl(G) ≤ ∆(G) + 1 and χ ′′ l (G) ≤ ∆(G) + 2 where ∆(G) ≥ 6.

متن کامل

Some Results on List Total Colorings of Planar Graphs

Let G be a planar graph with maximum degree Δ. In this paper, it is proved that if Δ ≥ 9, then G is total-(Δ+2)-choosable. Some results on list total coloring of G without cycles of specific lengths are given.

متن کامل

On Group Choosability of Total Graphs

In this paper, we study the group and list group colorings of total graphs and present group coloring versions of the total and list total colorings conjectures.We establish the group coloring version of the total coloring conjecture for the following classes of graphs: graphs with small maximum degree, two-degenerate graphs, planner graphs with maximum degree at least 11, planner graphs withou...

متن کامل

Fine Structure of 4-Critical Triangle-Free Graphs II. Planar Triangle-Free Graphs with Two Precolored 4-Cycles

We study 3-coloring properties of triangle-free planar graphs $G$ with two precolored 4-cycles $C_1$ and $C_2$ that are far apart. We prove that either every precoloring of $C_1\cup C_2$ extends to a 3-coloring of $G$, or $G$ contains one of two special substructures which uniquely determine which 3-colorings of $C_1\ cup C_2$ extend. As a corollary, we prove that there exists a constant $D>0$ ...

متن کامل

Acyclic Edge Colorings of Planar Graphs Without Short Cycles∗

A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most ∆(G)+2 if G contains no i-cycles, 4≤ i≤ 8, or any two 3-cycles are not incident with a common vertex and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2004